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In this perspective we explore the use of strategies from drug discovery, pattern recognition, and

machine learning in the context of computational materials science. We focus our discussion on the

development of donor materials for organic photovoltaics by means of a cheminformatics approach.

These methods enable the development of models based on molecular descriptors that can be correlated

to the important characteristics of the materials. Particularly, we formulate empirical models,

parametrized using a training set of donor polymers with available experimental data, for the important

current–voltage and efficiency characteristics of candidate molecules. The descriptors are readily

computed which allows us to rapidly assess key quantities related to the performance of organic

photovoltaics for many candidate molecules. As part of the Harvard Clean Energy Project, we use this

approach to quickly obtain an initial ranking of its molecular library with 2.6 million candidate

compounds. Our method reveals molecular motifs of particular interest, such as the benzothiadiazole

and thienopyrrole moieties, which are present in the most promising set of molecules.
1 Introduction

Current human consumption of energy amounts to 550 EJ per

year, which corresponds to 260 million barrels of oil equivalent

(MBOE) per day. If the world economy keeps growing at rates

close to what has been observed in the last hundred years,

human consumption of energy will reach 360 MBOE per day by
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Broader context

This perspective discusses the use of strategies from drug discovery a

cells materials. We focus our search on molecular fragments that c

tectures, but the method can be extended to other systems. We als

approaches for novel organic photovoltaic materials. To study d

candidates and analyze them using calculated chemical descriptors. W

between the structures and the photovoltaic properties we are after.

used as a valuable guide in the design of next-generation donor ma

a theory-driven screening and design effort for the next generation
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2035.1 To maintain a supply for this growing demand is

a challenge, primarily because of the decreasing energy return

on investments. At the same time, the continuing use of fossil

fuels will increase the impact of global climate change. Almost

87% of the energy consumed by humanity is currently derived

from fossil fuels2 and all renewable energy sources will be

needed in order to satisfy the present and future demand for

clean energy.

Solar power is a prominent source for renewable energy, in

particular for the production of electricity without greenhouse

gas emissions. Solar cells are made of thin layers of photovoltaic

materials which can harness sunlight for conversion into elec-

tricity. Crystalline silicon-based solar cells have dominated the

field of commercial photovoltaics, but drawbacks in the

manufacturing process as well as high production cost have

precluded them from widespread use.3 Thin-film technologies
nd pattern recognition in the search for improved organic solar

ould be used for donor polymers in bulk-heterojunction archi-

o present a brief overview of the evolution of different design

onor molecules, we generate a molecular library of potential

e then use a training set to search for quantitative relationships

The result is the elucidation of interesting moieties that could be

terials. This work is part of the Harvard Clean Energy Project,

of carbon-based solar cell materials.
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1have led to the development of solar cells based on other inor-

ganic materials such as CdTe,4 as well as the development of dye-

sensitized solar cells.5 Although none of these technologies have

reached a higher efficiency than crystalline silicon at 25%,6 they

allow for the possibility of cheaper fabrication and a favorable

efficiency/cost ratio, as their production process is less energy-

intensive.

Organic photovoltaic (OPV) cells represent another thin-film

approach which has drawn a lot of attention and has shown

significant progress in recent years.7 OPVs are particularly
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promising due to the abundance of their main constituents, their

low cost, scalability, and versatility of their installation. More-

over, the potential of rational design to improve the performance

of the solar cells has driven recent progress in OPVs. The record

power conversion efficiencies of OPVs have improved consider-

ably in the last years: from 1% in 1985;8 4% in 2002; 6% in 2009;

and up to 9.2% in 2011.9 If power conversion efficiencies of 10–

15% in combination with a lifetime of more than 10 years can be

achieved in production materials, OPVs could compete with

inorganic-based photovoltaics and become a commercially
Sule Atahan-Evrenk

Sule Atahan-Evrenk is a post-

doctoral research fellow in the

Aspuru-Guzik Group at Har-

vard University. She received

a B.S. degree in chemistry from

Bilkent University, Turkey, and

a Ph.D. in physical chemistry

from the University ofMaryland

College Park. Her research

interests include the theoretical

characterization of organic

electronic materials by quantum

chemistry and molecular

dynamics methods.

Roel S. S�anchez-Carrera is a research staff at the Robert Bosch

Research and Technology Center North America. He obtained his

B.S. in chemistry from the Monterrey Institute of Technology and

Higher Education, Mexico, and a Ph.D. in physical chemistry from

the Georgia Institute of Technology under the supervision of Prof.

J.-L. Br�edas. He then moved to Harvard University, where he

worked in the Aspuru-Guzik group as a Mary-Fieser Postdoctoral

Fellow.

Leslie Vogt completed a B.S. in physical chemistry at Juniata

College in 2005 and spent 2006–2007 working with Prof. Dr R.

Zimmermann as a Fulbright Fellow in Germany. She is completing

her Ph.D. at Harvard University in the Aspuru-Guzik Group

studying the electronic properties of organic materials as an NSF

Graduate Research Fellow.

Al�an Aspuru-Guzik

Al�an Aspuru-Guzik holds a

Ph.D. in physical chemistry from

UC Berkeley, and is currently an

associate professor of Chemistry

and Chemical Biology at Har-

vardUniversity.His research lies

at the intersection of quantum

information/computation and

theoretical chemistry. He is

interested in energy transfer

dynamics and renewable energy

materials. (See http://aspuru.

chem.harvard.edu and the

project webpage http://

cleanenergy.harvard.edu.)

This journal is ª The Royal Society of Chemistry 2011

http://dx.doi.org/10.1039/c1ee02056k


Pu
bl

is
he

d 
on

 2
2 

Se
pt

em
be

r 
20

11
. D

ow
nl

oa
de

d 
by

 H
ar

va
rd

 U
ni

ve
rs

ity
 o

n 
13

/0
6/

20
13

 1
5:

59
:4

0.
 

View Article Online
viable alternative for harnessing electricity from sunlight in

a wide range of applications.

Organic-optoelectronic materials span a vast chemical space

due to the structural versatility of their carbon-based framework.

The prospect of exploring this space has interesting implications

for materials design considerations. Due to challenges in the

synthesis and experimental characterization of these systems,

usually only a modest number of compounds can be studied as

candidates for active materials in OPVs.10,11 Approaches that

involve the in silico screening of potential organic semi-

conductors for OPV applications can aid in accelerating the

discovery of high-efficiency materials.12–14

In this perspective, we review the recent progress of semi-

conductor polymers for plastic solar cells, and later present the

basic ideas of cheminformatics (chemical informatics) for the

search of novel organic photovoltaic materials. We adopt the use

of physicochemical and topological descriptors, which are

commonly known and employed in drug discovery, for the

identification of promising organic semiconductors with desired

current–voltage characteristics and high power conversion effi-

ciencies. In this context we discuss the systematic construction

and optimization of the descriptor models. This technique is

employed as part of the Harvard Clean Energy Project,14,15

a high-throughput in silico screening and design effort to develop

novel high-performance materials for OPVs. The chem-

informatics investigation presented here is a valuable comple-

ment to the much more time consuming first-principles

electronic structure calculations performed in other parts of this

project.
2 Bulk-heterojunction solar cells

The state-of-the-art of OPVs are based on a bulk-heterojunction

(BHJ) architecture of two semiconductor compounds: one acting

as an electron donor (typically a polymer, or a small molecule)

and the other acting as an electron acceptor (a high electron

affinity molecule).16 Fig. 1 shows a schematic illustration of

a BHJ solar cell. The photovoltaic process begins with light

absorption and ends with charge transport to the electrodes. It

occurs through the following steps: i) optical absorption and

exciton formation, ii) exciton migration, iii) exciton dissociation

at the donor–acceptor interface, iv) charge carrier migration to
Fig. 1 (a) Device architecture of a bulk-heterojunction solar cell. Light

is incident upon the glass substrate. (b) Bulk-heterojunction photo-

physics: 1) a photon excites an electron to form an exciton, which

migrates to the donor/acceptor interface; 2) a difference between the

LUMO levels of the donor and acceptor (typically of the order of 300

meV or greater) causes the exciton to dissociate; 3) electrons and holes are

transported towards the cathode and anode, respectively; 4) charge is

collected at the electrodes, thus transforming light into current.

This journal is ª The Royal Society of Chemistry 2011
the electrodes, and v) charge collection at the electrodes. These

five steps are summarized in Fig. 1(b). This mechanism naturally

carries potential losses at each stage, mainly stemming from

inefficient absorption in the beginning and exciton recombina-

tion at the intermediate steps. Further details of these elementary

processes and their limiting factors have been described exten-

sively in the literature.17–19

The parameters which determine the overall efficiency of the

energy conversion process in a solar cell are examined in terms

of its current–voltage (i.e., power) characteristics.20,21 The power

conversion efficiency (PCE) is defined as the percentage of the

ratio of power output (Pout), to power input (Pin). Pout is the

maximum (m) obtainable electric power: the product of current,

Jm, and voltage, Vm. It is also possible to define Pout as

depending linearly on the product of the short circuit current

density (Jsc), the open circuit voltage, (Voc), and the fill factor

(FF). The fill factor is the ratio of the maximum power, JmVm,

to the product of Jsc and Voc. The product JmVm represents the

potential power available under the ideal conditions imposed by

JscVoc.
22 The FF then becomes a parameter that measures the

capacity of the device to obtain the most power available.

Losses depend on the parasitic resistance of the device and other

inefficiencies, which are related to the cell morphology.23,24

Thus, the formula to compute power conversion efficiency can

be written as:

%PCE ¼ FF$Jsc$Voc

Pin

� 100: (1)

Jsc and Voc are quantities that can easily be determined under

device illumination and largely depend on the molecular prop-

erties of the donor and acceptor moieties.

As detailed by Brabec,21 Voc is related to exciton dissociation,

which leads to the charge separation process (step iii, above). Voc

scales linearly with respect to the energy difference between the

highest occupied molecular orbital (HOMO) of the donor and

the lowest unoccupied molecular orbital (LUMO) of the

acceptor.25 Jsc, on the other hand, largely depends on the charge

mobility and the bandgap of the donor, which determines the

spectral overlap: the smaller the bandgap, the higher the spectral

overlap. The theoretical understanding of the important

parameters for high photovoltaic efficiency has led to models

that predict the efficiency of a donor material with respect to

a given acceptor, commonly PCBM (1-(3-methoxycarbonyl)

propyl-1-phenyl-[6,6]C61), as a function of their energy levels.26,27

In particular, the model of Scharber et al., ref. 26, has been

instructive for this purpose due to its simplicity.

The first generation of OPV architectures involved a structure

in which donor and acceptor layers of O(100 nm) were spin-cast.

These original designs for donor–acceptor bilayers are limited by

the intrinsic exciton diffusion length, as the excitons formed in

the donor layer have to reach the interface with the acceptor for

the exciton to dissociate.28 BHJ devices involve blends of donor

and acceptor materials which mix at the nanometre scale,

creating connected domains of O(10 nm) of donor and acceptor

materials that facilitate exciton diffusion to the interface before

recombination takes place.16,29,30 A challenge for theoretical

methods for materials discovery is that the ultimate efficiency of

BHJ materials depends on annealing conditions and co-solvents,

also known as additives.31 The general complexity and multiscale
Energy Environ. Sci., 2011, 4, 4849–4861 | 4851
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nature of the device morphology is very hard to model with

electronic structure theory.

Recent developments in device architecture that go beyond

simple BHJ designs are numerous. They include textured

substrates for increased light path lengths,32 the addition of

a titanium oxide (TiOx) layer on top of the BHJ layer as an

optical spacer which has internal quantum efficiencies of

100%33,34 and other improvements such as plasmonic

concentrators.35
3 Organic photovoltaic materials

In this section, we provide a brief overview on the evolution of

the different design approaches for novel OPV materials. The

sequence of developments will be relevant to the discussion

of our computational approach in the following sections, as the

results from the cheminformatics screening should correspond to

the experimentally observed trends. We show a (by no means

exhaustive) overview of the OPV milestones in Table 1.

Many of the initial donor materials for BHJ devices derived

from poly-[2-methoxy-5-(30,70-dimethyloctyloxy)-1,4-phenylene

vinylene] (MDMO-PPV, Fig. 2). These donors are combined

with PCBM as the acceptor. PCBM has been extensively used as

a solar cell acceptor material, along with its C70 analogue,
16,36,37

and all reported values in this perspective (e.g., Voc, Jsc, the FF

and PCE) use these molecules as acceptors. MDMO-PPV has

a low-lying HOMO of �5.4 eV. For the junction, a Voc of 0.82 V

and a Jsc of 5–6 mA cm�2 was measured. The small Jsc value can

be explained by the large donor bandgap, and it ultimately limits

the PCE to 3.3%.7,38

Regioregular poly(3-hexylthiophene) (rr-P3HT Fig. 2) with

a 1.9 eV bandgap emerged as a predominant donor due to its

higher Jsc, and refined morphological characteristics that lead to

a presumably higher exciton mobility than found in MDMO-

PPV. This advantage results in efficiencies of over 5%33,37 A high

lying donor HOMO precludes this molecule from having a larger

PCE, despite the improvements in Jsc and morphology.

Recent searches for donor materials have focused on

improving either Voc or Jsc, while eqn (1) clearly suggests the

need to optimize both. However, there seems to be a trade-off

between Jsc and Voc that can partially be attributed to the
Table 1 A non exhaustive overview of OPV development. Successive generati
achieved and the number of molecules predicted in the present study correspon
P3HT; square, donor; triangle, acceptor; cross, quinoline. Color Key: Co
a fragment with good hole mobility

Generation Motif Name

PPV MDMO-PPV38

P3HT P3HT33

DADA PCPDTBT31

DTAT PBnDT-DTffBT55

QUINO PBDTTT-CF60

4852 | Energy Environ. Sci., 2011, 4, 4849–4861
relatively high LUMO of the fullerene-based acceptors and their

interaction with the frontier molecular orbitals of the donor. To

improve upon this, a new generation of co-monomer based

materials was introduced, in which an electron-donor and an

electron-acceptor motif are coupled to form the ‘‘monomer’’ of

the polymer unit.
Donor–acceptor designs

One strategy, first proposed by Havinga, Zhang and others,39–41

involves improving the donor polymer properties by using a set of

alternating electron-rich (i.e., donor) and electron-deficient (i.e.,

acceptor)moieties to formco-monomers. This approach results in

a smaller bandgap for the donor via the hybridization of the

energy levels between the donor (typically with high HOMO) and

the acceptor (low LUMO) fragments in the co-monomer.41,42 It

also improves the intramolecular charge-transfer.43–45 This tech-

nique is thus labeled ‘‘donor–acceptor polymer’’ approach

(DADA in Table 1). For example, M€uhlbacher et al. synthesized

poly-[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b0]-
dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT Fig. 2),

which shows a low bandgap (1.7 eV) and also absorption activity

in the infrared region, with an overall efficiency of 3.2%.46

Morphological improvements via the co-solvent approach

mentioned above, led to an improved efficiency of 5.5%.31
Incorporation of high-mobility inducing fragments

Further improvements have been achieved by adding a moiety

which promotes the charge-carrier mobility. The co-monomer

poly-[2,7-(9-(20-ethylhexyl)-9-hexyl-fluorene)-alt-5,5-(40,70)-di-2-
thienyl-20,10,30-benzothiadiazole] (PFDTBT Fig. 2)47,48 has three

components: thiophene (T), as a donor; benzothiadiazole (BT),

as an acceptor; and fluorene (F), as the high-mobility fragment; it

is represented as DTAT in Table 1. The fluorene moiety is known

to absorb at short wavelengths, but the mixture with thienyl

fragments red-shifts the absorption. The thiophene moiety has in

addition good hole-transport properties, increases planarity, and

is used as the fragment on which alkyl chains are typically

fastened for improved processing. An initial success with this

design was demonstrated by an improved Voc of 1.05 V.
ons of OPV based on monomers and co-monomers: We show record PCE
ding to a particular design concept. Fragment Key: circle, PPV; pentagon,
lor schematically indicates bandgap size; except gray, which indicates

Maximum PCE (experimental) Top 1000 VocJsc (predicted)

3.3% —

5.0% 0

5.2% 17

7.2% 13

7.7% 117

This journal is ª The Royal Society of Chemistry 2011
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Fig. 2 Chemical structures highlighted in Sec. 3. MDMO-PPV was one of the first donor materials used. P3HT is a prevalent donor which has shown

higher Jsc, and refined morphological characteristics. PFDTBT and PCDTBT are co-monomers, in which the donor–acceptor polymer strategy was

applied to obtain higher PCE. PBDTTT-CF is a co-monomer, which features quinoidal stabilization and with the aid of the fluorine group has yielded an

efficiency of 7.7%.
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However, the Jsc remained low at 3.65 mA cm�2. The PCE of

PFDTBT was estimated to be 1.7%, but modifying the R groups

in fluorene pushed the PCE to 2.1%.47,48

Blouin et al. concentrated on finding better acceptor units in

the co-monomer. They substituted the fluorene moiety for

carbazole, a fully aromatic system, to obtain poly-[N-90- hepta-
decanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30-benzo-
thiadiazole)] (PCDTBT, Fig. 2). A considerable increase of the

Jsc to 6 mA cm�2 was achieved, albeit with a slightly lower Voc of

0.9 V. This resulted in an overall PCE of 3.6%.49 Following

a similar technique, Wang et al. replaced the fluorene moiety with

silafluorene (SiF), and obtained a PCE of 5.4%.50 The higher

efficiency is a result of the broader absorption spectrum of sila-

fluorene, which allows for a Jsc of 9.5 mA cm�2.

Blouin et al. continued to optimize their PCDTBT co-

monomer to focus on the acceptor fragments.10 Despite the

HOMO and LUMO levels being ideally tuned in some cases,

they were unable to improve their reported PCE of 3.6%.49

Recently, Park et al. were able to obtain 6.1% efficiency using

PCDTBT and adding a titanium oxide (TiOx) layer on top of

the BHJ layer as an optical spacer;34 an example of optimization

via modifying the device architecture. This improvement brings

PCDTBT efficiency close to the PCE limit predicted by the

Scharber model.26

Chen and Cao reviewed and analyzed donor–acceptor poly-

mer materials which contained either benzothiadiazole, thio-

phene, thienopyrazine or quinoxaline for a total of 39 co-

monomers.51 Their analysis revealed that systems with a lower

bandgap resulted in higher PCE values. The authors argue that

although there is a linear trend between the HOMO position and

the Voc,
25 there is significant scatter in the data to conclude that

other effects influence the open-circuit voltage. Furthermore,

Yang et al.52 have studied the effect of alkyl chains on theVoc and

Jsc for a given backbone. They found that there is a significant

change with respect to length and shape of the R-groups, which

argues in favor of strong dependence on morphology. The rela-

tionship between these changes are attributed to the strength of

intermolecular interactions between the polymer and PCBM

blend.
This journal is ª The Royal Society of Chemistry 2011
Weak donor, strong-acceptor motifs

Zhou and Price et al. have extended the donor–acceptor polymer

approach by introducing the concept of weak-donors and strong-

acceptors.53–57 Co-monomers are built similar to PFDTBT:

donor, thiophene, acceptor, thiophene (DTAT in Table 1). Once

again, thiophene moieties are present to increase planarity and as

a location to add the R-groups. Zhou et al. generate a weak-

donor moiety by starting from a strong (i.e., electron-rich)

component like thiophene and then fusing it with benzene, a less

electron-rich moiety.53 In the case of strong-acceptors, it is

important for the moiety to be p-electron deficient: the benzene

moiety in the benzothiadiazole unit can for instance be

substituted with pyridine, to generate thiadiazolo[3,4-c]pyri-

dine.54 Power conversion efficiencies following this design have

reached up to 6.3%. Further work revealed an explicit depen-

dence between the donor HOMO and the acceptor LUMO of

this co-monomer layout. Recent findings by these authors have

concentrated on optimizing these co-monomers using different

acceptors (including fluorinated moieties) and resulted in a PCE

of over 7%.55,57
Quinoidal structures

A successful technique to reduce the bandgap was based on using

alternating thieno[3,4-b] thiophene (TTP) and benzodithiophene

(BDT) units.58–61 The reduction of the bandgap is due to the

stabilization of the quinoidal structure of TTP. BDT experiences

quinoidal stabilization as well, but it also provides rigidity to the

backbone (represented as QUINO in Table 1). Liang, Chen et al.

have also explored the use of alkoxy sidechains to yield further

improvements. In particular, poly-[4,8-bis(2-ethylhexyloxy)-

benzo[1,2-b:4,5-b0]dithiophene-2,6-diyl-alt-(4-octanoyl-5-fluoro-
thieno[3,4-b]thiophene-2-carboxylate)-2,6-diyl] (PBDTTT-CF,

Fig. 2) has the TTP unit alkoxylated and fluorinated in positions

2 and 3, respectively. PBDTTT-CF results in a maximum PCE of

7.7%,60 which is one of the best efficiencies to date.

The fluorine moiety shifts the donor HOMO and LUMO

values which leads to a greater Voc, without affecting the Jsc.
Energy Environ. Sci., 2011, 4, 4849–4861 | 4853
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Further work based on the quinoidal strategy has met with mixed

results since the control of the bandgap becomes more difficult

when there are no explicit acceptors and donors in the polymer.62
Improved acceptor materials

The development of acceptor materials has been dominated by

functionalized fullerene derivatives, such as PCBM. PCBM has

been extensively employed as a solar-cell acceptor material since

it was first reported in 1995.16,36,37 Although the HOMO and

LUMO levels of these systems are not ideal for the known donor

polymers, no better candidates have been found.26 C60 and C70-

based molecules exhibit a high electron mobility and affinity,

which is highly isotropic due to their spherical shape. Func-

tionalizing them with the ester moiety provides for good solu-

bility, as well as a higher LUMO level, which reduces its work

function.63 Due to the relative success of PCBM, the search for

better organic photovoltaic materials has primarily become

a pursuit for finding ideal donor properties constrained by the

energy levels of fullerene-based acceptors.

Recent reviews on acceptor materials include those by

Anthony on organic-based non-fullerene molecules64 and by Xu

and Qiao on inorganic-based systems.65 We refer to the recent

work by Gendron and Leclerc for other classes of donor poly-

mers.66 As outlined in this section, a series of compound-design

strategies for donors and acceptors and their rationalization has

resulted in a systematic increase of reported efficiencies. In the

following section we will explore how computational approaches

based on cheminformatics can provide guidance towards inno-

vation and the next generation of OPV materials.
4 Cheminformatics modelling

The rational design of donor and acceptor moleculesx for OPVs

can be pursued by computational studies of potential candidates.

Electronic structure calculations represent a valuable tool to

characterize optoelectronic features and processes central to the

performance of organic semiconductors.67,68 Current calculation

schemes allow the prediction of electronic properties such as

HOMO, LUMO and optical bandgap, as well as other molecular

properties that are considered to ultimately be related to the OPV

efficiency, such as partial charges, intramolecular interactions,

and geometries. These calculations are, however, still time

consuming and computationally demanding. The Harvard Clean

Energy Project14,15 (CEP) has been set up for an automated, large

scale in silico characterization of millions of molecules. Based on

computational resources provided by distributed volunteer

computing in collaboration with IBM’s World Community

Grid,69 CEP is currently performing a systematic screening of

millions of candidate molecules using electronic structure theory.

Cheminformatics methods allow the ‘‘transformation of data

into information and information into knowledge’’70 and they

are being employed as a complementary approach to the

quantum chemical work within CEP.

To date, cheminformatics has primarily been designed to

provide a fast way of screening large libraries of potential
x In the following we will collectively use the term ‘molecules’ for
monomers, oligomers, and actual molecules.
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compounds, mostly for pharmaceutical applications. This disci-

pline has been described as ‘‘all the information resources that

a scientist needs to optimize the properties of a ligand to become

a drug.’’71 However, the tools developed in this field, and closely

related techniques in machine learning and pattern recognition,

can in principle be applied to other materials discovery

endeavors. Developments in cheminformatics have been driven

by the combination of experimental high-throughput screening

(the assay and analysis of more than a million chemical reac-

tions) and with the ability to computationally predict physico-

chemical parameters (called descriptors). The basic strategy of

this approach is to obtain these descriptors for candidate mole-

cules, often obtained from designated candidate libraries,72–80 to

score their fitness with respect to a desired set of properties.

One of the most important methods is the identification of

quantitative structure–property relationships (QSPR).81–86 This

technique has focused intensely in the search for molecules to be

experimentally screened as potential drugs, or as drug leads.87

More recently, QSPR were employed in the study of certain

molecules for an understanding of the fundamental processes of

cellular and organismic biology.88,89 In similar fashion to QSPR,

quantitative structure-activity relationships (QSAR) are used to

study the biological activity of such problems. We note that the

complexities faced in the interactions between organic molecules

in biological systems are greater than in those found in organic

electronic materials. Despite these challenges, cheminformatics

has been successful in several areas on the interface between

chemistry and biology.90 For instance, it is possible to analyze the

conformation of drug candidates to evaluate their docking

potential to a particular biomolecular target and for a prediction

of its use as a pharmacophore.

QSPR have been developed for a wide variety of applications,

which include single-molecule, intermolecular and reactive

properties. The success of this approach has stimulated its use in

recent years, as can be seen in several reviews.87,91 The materials

science community has just begun to utilize machine-learning

methods, which encompass cheminformatics and QSPR. Work

in this area has led to the prediction of crystal structures of

inorganic molecules,92–95 as well as the development of methods

for visualizing and identifying potential porous materials.96,97

The simplest QSPR approaches are based on linear regression

models, but more sophisticated forms which incorporate genetic

algorithms, artificial neural networks, and the Gaussian

processes technique have been developed in recent years.12,98–100

Several other techniques in cheminformatics have been used for

the identification of leads not related to regression models. These

include statistical tools used in machine learning such as prin-

cipal component analysis, linear discriminants, and decision

trees.81,84,101,102

QSAR and QSPR largely rely on the calculation of molecular

properties called descriptors, which we will discuss in Sec. 4.1.

Descriptors include physical, chemical and topological proper-

ties. Descriptors can be classified as either one-, two- or

three-dimensional, depending on whether they describe bulk

properties, connectivities or conformation-dependent properties,

respectively.83,103 The use of descriptors in cheminformatics has

provided simple rules to evaluate druglikeness, as in the case of

Lipinski’s Rule of Five which analyzes molecules using a set of

structural descriptors: molecular mass, hydrogen bond donors,
This journal is ª The Royal Society of Chemistry 2011
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hydrogen bond acceptors, partition coefficient, and number of

rotatable bonds.104 These rules have been very useful for the

development of drug leads. Therefore, there have been active

efforts to develop computer codes that allow the rapid evaluation

of hundreds of such descriptors.105–107

4.1 The molecular library and physicochemical molecular

descriptors

In order to search for donor molecules that have the best

combination of electronic properties, we built a molecular library

of approximately 2.6 million conjugated molecules. The molec-

ular library employed is built via a combinatorial molecule

generation scheme starting from a set of 30 molecular building

blocks (in the ESI†). The fragments include the most prevalent

molecular motifs used in the experimental design of OPVs to date

and are chosen with input from experimentalist collaborators

from the group of Zhenan Bao at Stanford University to ensure

synthetic feasibility.108 As discussed in Sec. 3, R-groups play an

important role in OPV materials but for the present work we

chose to focus only on the molecular backbone.

We enumerate the library using a virtual reaction-based

approach by either linking or fusing the fragments together, as

shown in Scheme 1. We also extend the size of the co-monomers

by properly adding molecular handles, so they can be further

linked or fused. Complete details of the molecular library

generation will be presented in a separate publication.109

We use the previously introduced descriptors for an initial

characterization of our molecular library. We employ theMarvin

code by ChemAxon.105 ChemAxon provides a set of over 200

descriptors that are relevant for drug design applications, but

they nonetheless proved useful in the application for OPV donor

materials. We selected descriptors corresponding to elemental

analysis, charge, geometry, and electronic states based on H€uckel

theory for the study of monomers for use as donor in OPVs. For

atomic-based properties, we assessed the maximum, minimum

and average value in the molecule. There are a total of 33

descriptors in our model, their classes are listed in Table 2. These

can be easily computed for the whole library within a few days on

a single workstation.

A specific example of a descriptor that displayed statistically

significant correlation is the electrophilic localization energy, L

(+), which is an atom-centered property based on the H€uckel

method: the simplest semiempirical approach for obtaining
Scheme 1 A reaction-based approach for enumerating a molecular library.

para position reacts with pyrrole with Mg chemical handles at the 2,5-posit

moieties. (b) Fusion reaction: Benzene molecule with Mg chemical handles in

position to form benzopyrrole. In both cases, a second set of Mg handles (re

generation of co-monomers of greater size.

This journal is ª The Royal Society of Chemistry 2011
quantum-mechanical properties of conjugated molecules.110 L(+)

is the energy related to removing an atom from conjugation,

effectively donating two p-electrons to the electrophile. The

lower the value of L(+), the more reactive the compound.

Therefore, a small value of electrophilic localization energy

means that the atom contributes little to the overall conjugation

of the molecule. The effect is shown in Scheme 2.

4.2 Descriptor model and training set results

We have chosen a simple linear regression model for this initial

investigation. The descriptors chosen above are assembled

accordingly and the resulting model is parametrized using

a training set of organic monomers with experimentally known

current–voltage characteristics. We selected a set of 50 training

molecules compiled from the literature.46,50,51,111–121 These mole-

cules include aliphatic side chains used to control packing

structures. The current work is concerned with donor materials

of BHJ design, but this method can naturally be applied to other

device architectures and materials given the appropriate training

set.

As mentioned in Sec. 1, we focus on the four most relevant

parameters for the performance characteristics of a solar cell.

These are PCE, and its components as expressed in eqn (1): the

FF, Voc and Jsc. Note that Voc and Jsc largely depend on prop-

erties intrinsic to the donor and acceptor. FF broadly depends on

the morphology and the specific device architectures. We can

therefore expect that the molecular descriptors used and the

experimental values will show a better correlation for the first

two than for the latter. The expression to determine PCE

includes all three parameters and its correlation should thus fit in

between the others.

The multiple linear regression for the descriptor models with

respect to these four parameters was performed using the R

code.122 The correlation, as obtained by the use of the 33

descriptors, varied from very good (R2
Voc

¼ 0:96, R2
Jsc

¼ 0:92) or

good (R2
PCE ¼ 0.89) to poor (R2

FF ¼ 0.66). We performed

a significance test on the descriptors and eliminated the least

significant ones which only slightly reduced the precision of the

fit (shown in the ESI†). The significance of the descriptors was

obtained from a two-sided t-statistics test. The p-value for each

descriptor ranged from 10�3 to 10�1.

In order to mitigate the difficulty of predicting the FF from

a purely cheminformatics approach, we also built a model for the
(a) Linking reaction: Benzene molecule with Mg chemical handles in the

ion. One set of Mg (green) react to form a linked co-monomer of these

the para position reacts with pyrrole with Mg chemical handles at the 2,5-

d) is present so that this product can be used as a reagent and enable the

Energy Environ. Sci., 2011, 4, 4849–4861 | 4855
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Table 2 Classes of physicochemical and topological descriptors employed in the presented models. We note that these 17 descriptor classes amount to
33 individual descriptors. An asterisk denotes the descriptor is based on semiempirical H€uckel model calculations

Descriptor Description

Molecular mass Molecular mass
logP Octanol-water partition coefficient, a measure of hydrophobicity based on

group contributions from a set of basic fragments fitted to experimental
values123

Ring count Number of rings in the molecule
Hydrogen bond acceptor count Number of hydrogen bond acceptor atoms
Hydrogen bond donor count Number of hydrogen bond donor atoms
Rotatable bond count Excludes bonds connecting hydrogens and terminal atoms
Molecular polarizability Empirical calculation based on a dipole interaction model from atomic

polarizabilities, experimental and ab initio values124,125

Refractivity Empirical calculation of atomic refractivity; related to London dispersion
forces126

van der Waals surface area Molecular surface area as defined by van der Waals radii
van der Waals volume Molecular surface volume as defined by van der Waals radii
Water accessible area Water accessible surface area based on atomic properties
Electronic localization energy* Energy related to removing an atom from conjugation110,127

Partial charge* Partial atomic charges for p systems and electronegativity-based
calculation for the s network128

Electron density* Based on occupancy of atomic-centered orbitals110,127

Steric hindrance Steric hindrance of an atom calculated from the covalent radii values
s orbital electronegativity* Mulliken atomic orbital electronegativity from s orbitals128

p orbital electronegativity* Mulliken atomic orbital electronegativity from p orbitals128

Scheme 2 The electrophilic localization energy, L(+). The energy related

to the bond formation at a conjugated center, which will remove that

center from conjugation, effectively taking away two p-electrons from

the conjugated backbone. The lower the value of L(+), the more reactive

the compound, meaning that the atom contributes little to conjugation.

Fig. 3 Results for the multiple linear regression of the four models and

the values of the training set. The predicted value from fitted descriptors

is compared to the experimental value originally used for fitting. Units

are mA cm�2 for Jsc, and V for Voc.
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product VocJsc, which is proportional to PCE but only contains

parameters well represented in our cheminformatics approach.

We summarize the results related to the coefficients of determi-

nation (R2) of the fitting in Table 3. We also present the results of

the predicted properties against the measured ones in Fig. 3. As

stressed above, it is not unexpected that the parameters which

depend on the material properties, Voc and Jsc, result in a much

better fit than the FF.
Table 3 Summary of linear fitting results for each of the properties we
study. We compare the coefficients of determination (R2) using all 33
descriptors (all desc.) and the statistically significant ones. The number of
significant descriptors ranges from 15–20, but the R2 is not largely
affected in all cases

Property R2 (all desc.) Descriptors R2

Voc 0.9580 20 0.9455
Jsc 0.9202 18 0.8989
%PCE 0.8937 15 0.8409
FF 0.6567 20 0.6170
VocJsc 0.9025 20 0.8809

4856 | Energy Environ. Sci., 2011, 4, 4849–4861
The fit resulted in families of significant descriptors that were

different for each of the experimental parameters. The best

description included 20 descriptors for Voc and VocJsc, 18 for Jsc
and 15 for PCE. Four descriptors are present in the models of

each four parameters. We group estimates of these descriptors in

Table 4. We notice that each descriptor in this subset has either

a positive or a negative correlation for all four values. The

separation between estimates is never larger than two orders of

magnitude. Therefore, these descriptors form a tight set of esti-

mates that affect each of the parameters in a similar fashion.

As in most machine learning approaches, it is a complicated

task to uniquely specify the role of all of individual descriptors

for a specific property. Ultimately the combination of all the

descriptors in the model is what makes the fit have a relatively

good R2 value of the fits.
This journal is ª The Royal Society of Chemistry 2011
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Table 4 Estimates for the four prevalent descriptors for the Voc (20 descriptors), Jsc (18 descriptors), PCE (15 descriptors), and the product VocJsc (20
descriptors). The estimate for each of these descriptors are all within two orders of magnitude and have the same sign

Descriptor

Estimates

Voc Jsc %PCE VocJsc

Rotatable bond count +0.2375 +2.3886 +0.8393 +1.9484
Electron density (lowest) �0.8403 �24.1885 �11.3297 �20.9617
Orbital electronegativity (s) (average) �1.4448 �38.4895 �15.5656 �23.4284
Orbital electronegativity (p) (highest) +0.2317 +2.5199 +1.7823 +3.0837
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4.3 Predictions from cheminformatics

We now apply the models created in the previous section to the

2.6 million molecules of the candidate library and summarize our

findings. The histograms of the obtained results are shown in

Fig. 4. In the cases of Voc and Jsc (and therefore in VocJsc) there

are a considerable number of molecules with predicted values

well above the largest observed to date. These molecules

constitute the most promising candidates for BHJ donor OPV

materials within the presented cheminformatics approach. Some

molecules are predicted to have an unrealistic negative value. The

fraction of molecules in this situation is small for all parameters

except for the FF, which can easily be explained by its relatively

poor model. Being mindful of the limitations of the extrapola-

tion, we find that for Voc nearly half of the molecules are pre-

dicted to have a value higher than the best of the experimental

molecules (1.04 V), and only 0.8% have a negative value; for Jsc,

41.5% of the molecules have a value higher than the best exper-

imental, and 8.3% have a negative value; only 1.5% of the

molecules have a predicted value of PCE higher than the highest

experimental, and the highest value is 10.4%, but there are 43.4%

of molecules with a value of the product VocJsc higher than the
Fig. 4 Histograms of the predicted current–voltage parameters (open circui

conversion efficiency (PCE), and the productVocJsc) for the screening of 2,671,

correspond to the experimental values of the molecules in the training set (i.e.,

than the best experimental ones, especially for Voc and Jsc, their product, and

This journal is ª The Royal Society of Chemistry 2011
highest experimental; these molecules, combined with an

appropriate value of the FF (which is not predicted well by these

descriptors) could have values of PCE above current records.

These results are summarized in Table 5.

We further investigate which of the highest rated molecules

have the best value for each of the three current–voltage

parameters considered (Voc, Jsc, VocJsc). We test if a promising

molecule for Voc is also a good candidate for Jsc and VocJsc. We

selected the top 10% from each group and compared them. We

find that molecules predicted to have a high value of Voc only

rarely have also a high value of Jsc, and vice versa. Fig. 5 shows

the position in the predicted Voc vs. Jsc space of the top 10% of

molecules from each group: Voc, Jsc, and VocJsc. We observe that

molecules predicted to have the highest values of the product

VocJsc have mostly a high value of Jsc and an average value of

Voc, i.e. they have a higher overlap with the top values of Jsc. This

suggests that the search for high efficiency monomers, is partic-

ularly promising with molecules based on motifs present in both

the Jsc and VocJsc optimization.

For a more detailed analysis of the results we focus on the top

thousand molecules (all following quantities are taken w.r.t. to

the top 1000) with the best current–voltage characteristics. For
t voltage (Voc), short circuit current density (Jsc), fill factor (FF), power

405 molecules. Units are mA cm�2 for Jsc, and V forVoc. The vertical lines

independent of the y -axis value). Note that the predicted values are larger

PCE.

Energy Environ. Sci., 2011, 4, 4849–4861 | 4857
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Table 5 Best current–voltage characteristics predicted from molecular descriptors in the molecular library as compared with experimentally measured
for the training set. The highest efficiency predicted is 95% above than the best experimental value. The percentage of molecules predicted to have
parameters exceeding the highest experimental value is above 37% for the better fits. Also shown is the percentage of molecules showing (unrealistic)
negative values of the parameters

Voc (V) Jsc (mA cm�2) VocJsc (mAV/cm2) %PCE

Max. value (experimental) 1.04 15.0 8.63 5.32
Max. value (predicted) 2.97 41.5 23.61 10.36
% molecules above highest experimental 43.6 37.2 43.4 1.5
% molecules with negative value (predicted) 0.8 8.3 8.0 19.7

Fig. 5 Top 10% molecules with highest predicted values of Voc (green),

Jsc (blue), and VocJsc (red). The intensity of the point corresponding to

a given molecule is coded according to the value of the product VocJsc.

The best molecules, according to the present study, are located in the

upper left region of the figure. Units are mA cm�2 for Jsc, and V for Voc.

Fig. 7 Ubiquitous motifs present in many of the most promising

molecules according to the predicted VocJsc parameter: a) benzothiadia-

zole or pyridinethiadiazole motif, b) thienopyrrole motif.
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Voc, we notice that these have at least one silicon atom and are

built mostly by both linking and fusing the 30 basic fragments. A

typical molecule from this set is shown in Fig. 6a. For Jsc, silicon

atoms are not as common (161 molecules have at least one) but
Fig. 6 Typical molecules from the set of cheminformatics predictions for h

silicon), (b) Jsc (note the linked backbone, the selenium atoms and the thienop

benzothiadiazole and thienopyrrole motifs).

4858 | Energy Environ. Sci., 2011, 4, 4849–4861
instead selenium-containing heteroatoms are more frequent (313

molecules have at least one) and the thienopyrrole motif is

present in 822 molecules. The molecules of this set have

a predominantly linked rather than fused backbone. Fig. 6b

shows a typical molecule from this set.

Again, the best expected co-monomers for application in

heterojunction OPVs correspond, according to this QSPR anal-

ysis, to the ones with the highest value of VocJsc, for which the set

of the best thousand have molecules with silicon atoms (375),

selenium atoms (131), silicon and selenium atoms (53) and come

mostly from linking the basic units (890). The benzothiadiazole

or pyridinethiadiazole motifs are prevalent in this set of candi-

dates (see Fig. 7), present in 463 molecules. Similarly, units that

can potentially have quinoid stabilization are prominent in this

set. Specifically, 117 present the thienothiophene moiety. This

suggests that the search for monomers with high efficiency as

OPV’s, should start with molecules based in the motifs presented

in Fig. 7, as well with those with potential quinoidal stabilization.

We currently work on a cross-validation of the present
ighest (a) Voc (note the mixed linked and fused heterocyclic units with

yrrole motif), (c) VocJsc (note the mixed linked and fused structure and the

This journal is ª The Royal Society of Chemistry 2011
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predictions with the ones from the quantum chemical studies

within the Harvard Clean Energy Project which will be presented

in the near future.
5 Discussion and conclusions

In the present work we introduced a cheminformatics based

approach for the discovery of promising OPV donor materials.

We calculated the current–voltage properties of 2.6 million

molecular motifs using linear regression descriptor models.

These allowed us to identify candidates with a favorable set of

performance related parameters, which – according to our QSPR

analysis – have the prospect of being suitable as high-efficiency

BHJ solar cell materials. The molecules with the most promising

predictions feature a variety of structural designs, but three

motifs appear repeatedly in our top candidates: benzothiadia-

zole, pyridinethiadazole and thienopyrrole, shown in Fig. 7.

As summarized in Table 1, the evolution of OPV donor

materials has followed different design strategies, including the

donor–acceptor polymer approach and the quinoidal stabiliza-

tion. The last column of Table 1 shows the number of molecules,

from our top 1000 selection, which are part of each design

‘‘generation’’. We note that PPV-like molecules were not

included in our study, and P3HT was not predicted to be in the

top 1000. However, there were 17 molecules that followed the

donor–acceptor approach. We obtained 13 molecules with the

design specified as DTAT, although in our case these systems

only had one thiophene scaffold. Finally, molecules with qui-

noidal stabilization (i.e., containing thienothiophene) numbered

117. A significant fraction of our top molecules hence belongs to

the latest generation of OPVs.

Despite the limitations of this simple approach, we can

conclude that the use of QSPR and cheminformatics-type

approaches can be a valuable guide for the design of lead

molecules for solar cell materials. Current efforts to improve

upon the presented work include the use of more sophisticated

and flexible models, extended and improved training sets, as well

as a new generation of descriptors specifically designed for

organic semiconductors. The latter can be derived from higher

level quantum-chemical studies carried out in the Clean Energy

Project.14,15
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